Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones.
نویسندگان
چکیده
Trogocytosis, the transfer of membrane patches from target to immune effector cells, is a signature of tumor-T cell interaction. In this study, we used the trogocytosis phenomenon to study functional diversity within tumor-specific T cell clones with identical TCR specificity. MART-1(26-35)-specific CD8 T cell clones, which differed in their trogocytosis capacity (low [2D11], intermediate [2G1], high [2E2]), were generated from melanoma patients. Functional evaluation of the clones showed that the percentage of trogocytosis-capable T cells closely paralleled each clone's IFN-γ and TNF-α production, lysosome degranulation, and lysis of peptide-pulsed targets and unmodified melanoma. The highly cytotoxic 2E2 clone displayed the highest TCR peptide binding affinity, whereas the low-activity 2D11 clone showed TCR binding to peptide-MHC in a CD8-dependent manner. TCR analysis revealed Vβ16 for clones 2E2 and 2G1 and Vβ14 for 2D11. When peptide-affinity differences were bypassed by nonspecific TCR stimulation, clones 2E2 and 2D11 still manifested distinctive signaling patterns. The high-activity 2E2 clone displayed prolonged phosphorylation of ribosomal protein S6, an integrator of MAPK and AKT activation, whereas the low-activity 2D11 clone generated shorter and weaker phosphorylation. Screening the two clones with identical TCR Vβ by immunoreceptor array showed higher phosphorylation of NK, T, and B cell Ag (NTB-A), a SLAM family homophilic receptor, in clone 2E2 compared with 2G1. Specific blocking of NTB-A on APCs markedly reduced cytokine production by CD8 lymphocytes, pointing to a possible contribution of NTB-A costimulation to T cell functional diversity. This finding identifies NTB-A as a potential target for improving anti-cancer immunotherapy.
منابع مشابه
Imprinting of lymphocytes with melanoma antigens acquired by trogocytosis facilitates identification of tumor-reactive T cells.
Trogocytosis is a contact-dependent intercellular transfer of membrane fragments and associated molecules from APCs to effector lymphocytes. We previously demonstrated that trogocytosis also occurs between tumor target and cognate melanoma Ag-specific cytotoxic T cells (CTL). In this study, we show that, following trogocytosis, immune effector cells acquire molecular components of the tumor, in...
متن کاملCapture of tumor cell membranes by trogocytosis facilitates detection and isolation of tumor-specific functional CTLs.
The success of adoptive cell transfer in the treatment of metastatic cancer in humans is dependent on the selection of highly active tumor-specific cytotoxic T cells. We report here that CTLs capture membrane fragments from their targets while exerting cytotoxic activity and thus gain a detectable functional signature by which they can be identified. Fluorochrome labeling or biotinylation was u...
متن کاملHuman melanoma-reactive CD4+ and CD8+ CTL clones resist Fas ligand-induced apoptosis and use Fas/Fas ligand-independent mechanisms for tumor killing.
Tumor cells have been shown recently to escape immune recognition by developing resistance to Fas-mediated apoptosis and acquiring expression of Fas ligand (FasL) molecule that they may use for eliminating activated Fas+ lymphocytes. In this study, we report that tumor-specific T lymphocytes isolated from tumor lesions by repeated in vitro TCR stimulation with relevant Ags (mostly represented b...
متن کاملAdoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells.
Adoptive T cell therapy, involving the ex vivo selection and expansion of antigen-specific T cell clones, provides a means of augmenting antigen-specific immunity without the in vivo constraints that can accompany vaccine-based strategies. A phase I study was performed to evaluate the safety, in vivo persistence, and efficacy of adoptively transferred CD8+ T cell clones targeting the tumor-asso...
متن کاملCutting edge: in vivo trogocytosis as a mechanism of double negative regulatory T cell-mediated antigen-specific suppression.
Recent data have demonstrated that treatment with alphabeta-TCR(+)CD3(+)CD4(-)CD8(-)NK1.1(-) double negative (DN) regulatory T cells (Tregs) inhibits autoimmune diabetes and enhances allotransplant and xenotransplant survival in an Ag-specific fashion. However, the mechanisms whereby DN Tregs suppress Ag-specific immune responses remain largely unknown. In this study, we demonstrate that murine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 188 2 شماره
صفحات -
تاریخ انتشار 2012